

- 1. Challenges of PIR design
- 2. Recommendation 1: Strut-and-tie method for strut check
- 3. Recommendation 2: Strut-and-tie method for tie force
- 4. Recommendation 3: Option for bond stress
- 5. Recommendation 4: Minimum cover and edge distance
- 6. Design example
- 7. Reconciliation with BA theory
- 8. Conclusion

1. Challenges of PIR design The two distinct theories (namely REA theory as per EN 1992-1-1, 2004 and BA theory as per EN1992-4, 2018) were developed individually with departed philosophy. **REA** theory for cast-in rebars is ideal for most engineers due to familiarity. However, engineers may find the computed anchorage length can be overly long. 3 An example of anchorage length based on EN 1992-1-1 (2004) $f_{cu,k} = 30 \text{ MPa}, f_{vk} = 500 \text{ Mpa}$ $\alpha_2 = 0.7, \, \alpha_{\rm lb} = 1.5$ $l_{\rm b} = \alpha_2 \ l_{\rm b,rqd} \ge$ Remarks on Remarks on $l_{\rm h}$ in BS 8110 ϕ l_{\min} in EC2 beam-column slab-wall (mm)(mm)(mm)connection connection More critical 476 12 338 Constructible, than beam-16 451 635 provided the column 794 20 564

column sectional

depth is

sufficient.

992

1270

25

32

705

902

connections, due

to the limited

thickness of the

wall.

The challenges of BA theory

- Very short anchorage length uncommon in PIR practice and not thoroughly researched although there were technical papers (*Mahrenholtz et al., 2015 and Charney et al. 2013*) proposed BA for PIR.
- More common in concrete-to-steel connection, rather than concrete-concrete connection.

Fig. 1-Adhesive anchors used to secure column baseplate.

Figure taken from:

Charney et al. (2013). Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures. ACI Structural Journal, 110(3), 437-446)

The challenges of BA theory

Should the capacity based on cracked or uncracked concrete? Some technical discussions can be found at <u>http://www.aefac.org.au/documents/AEFAC-TN06-concrete.pdf</u>

Complex computations with many coefficient factors.

Steel failure (Cl. 6.2.2) $N_{Rd,s} = f_{uk}A_s/\gamma_{Ms}$ where $\gamma_{Ms} = 1.2 f_{uk}/f_{yk} \ge 1.4$ $N_{Rd,y} = f_{yk}A_s/\gamma_s$ where $\gamma_s = 1.15$

Combined bond (pull-out) and $N_{Rk,p}^{\circ} = f_{bd} \pi \phi l_b$ concrete failure (Cl. 6.2.2) $N_{Rk,p} = N_{Rk,p}^{\circ} \psi_{A,Np} \psi_{s,Np} \psi_{g,Np} \psi_{re,N} \psi_{ec,Np}$

Concrete cone (breakout) failure $N^{\circ}_{Rk,c} = k_{cr} \sqrt{f_{cu}} l_b^{1.5}$ (Cl. 6.2.3) $N_{Rk,c} = N^{\circ}_{Rk,c} \psi_{A,Nc} \psi_{s,N} \psi_{re,N} \psi_{ec,N}$

Splitting failure (Cl. 6.2.4) $N_{Rk,sp} = N^{\circ}_{Rk,c} \psi_{A,Nsp} \psi_{s,Nsp} \psi_{re,N} \psi_{ec,N} \psi_{h,sp}$

The challenges of BA theory

- Additional check for shear resistance
- Interaction check of tension + shear
- Due to the complexity of the process, many manufacturers offer software that performs this task.

Recommendations for PIR design

In view of the challenges, 4 design recommendations are proposed.

• A design example is illustrated with the use of the recommendations.

- 1. Challenges of PIR design
- 2. Recommendation 1: Strut-and-tie method for strut check
- 3. Recommendation 2: Strut-and-tie method for tie force
- 4. Recommendation 3: Option for bond stress
- 5. Recommendation 4: Minimum cover and edge distance
- 6. Design example
- 7. Reconciliation with BA theory
- 8. Conclusion

Recommendation 1: STM for strut check

9

Use STM to check strut strength to avoid web crushing failure

Recommendation 1: STM for strut check

(a) No out-of-plane shear (V in minor axis)(b) Provide minimum anchorage length to preclude concrete pry-out failure (V in major axis).

Content

- 1. Challenges of PIR design
- 2. Recommendation 1: Strut-and-tie method for strut check
- 3. Recommendation 2: Strut-and-tie method for tie force
- 4. Recommendation 3: Option for bond stress
- 5. Recommendation 4: Minimum cover and edge distance
- 6. Design example
- 7. Reconciliation with BA theory
- 8. Conclusion

Recommendation 1: STM for tie force Use STM to compute the actual acting force, rather than using the yield strength of steel. In EN 1992-1-1 (2004), the design stress (σ_{sd}) is not precisely described in the code. An article written by the Concrete Centre of the Mineral Products Association (MPA) (CDG-5, 2015) stated that σ_{sd} can be rationally determined using the ratio of steel area required (A_{s,rqd}) to steel area provided (A_{s,prov}), multiply by the design yield strength of steel (i.e., A_{s,rqd}/A_{s,prov} · f_{yk}/γ_s), but still pretty much relying on the yield strength.

STM in EN 1992-1-1 (2004)

• Cl. 9.2.1.4(2) allows a STM to calculate the axial forces (F_{Ed}) in the rebar, which suits well to estimate the design stress (σ_{sd})

$$F_{Ed} = |V_{Ed}| \frac{a}{z} + N_{Ed}$$

Where, V_{Ed} is the design shear force, *a* is the shear span, *z* is assumed to be 0.9 *d*, *d* is the effective depth of the section and N_{Ed} is the axial force (direct axial or resulted from bending) to be added to or subtracted from the tensile force.

$$\sigma_{sd} = F_{Ed}/A_s = [|V_{Ed}| \pm M_{Ed}/z] / A_s$$

- 1. Challenges of PIR design
- 2. Recommendation 1: Strut-and-tie method for strut check
- 3. Recommendation 2: Strut-and-tie method for tie force
- 4. Recommendation 3: Option for bond stress
- 5. Recommendation 4: Minimum cover and edge distance
- 6. Design example
- 7. Reconciliation with BA theory
- 8. Conclusion

17

Recommendation 3: Option for bond stress

Provide flexibility for engineers by having: -

• Option 1: f_{bu} as per EN 1992-1-1 (2004) cast-in rebar, hence α_2 as per EC2;

$$0.7 \le \alpha_2 = 1 - \frac{0.15(c_d - \phi)}{\phi} \le 1.0$$
 (Tension)

• Option 2: f_{bu} as per ETA or manufacturer's technical data, hence α_2' as per extended EC2 method for higher bond stress.

$$\alpha_2' = \frac{1}{\frac{1}{0.7} + \delta \frac{c_d - 3\phi}{\phi}} \ge 0.25 \text{ (Tension)}$$

- 1. Challenges of PIR design
- 2. Recommendation 1: Strut-and-tie method for strut check
- 3. Recommendation 2: Strut-and-tie method for tie force
- 4. Recommendation 3: Option for bond stress
- 5. Recommendation 4: Minimum cover and edge distance
- 6. Design example
- 7. Reconciliation with BA theory
- 8. Conclusion

Recommendation 4: Minimum cover and edge distance

- This recommendation is to account for splitting failure.
- EN 1992-1-1 (2004) stated that the maximum boundary is reached when α₂ equals to 1.0, c_d corresponds to 1φ. It should be noted that such small cover of 1φ may present challenges in hole drilling for post-installed rebar system.

Recommendation 4: Minimum cover and edge distance

EOTA EAD 330087 (2018) proposed the minimum cover as a function of drilling method, rebar size and with or without the use of drilling aid, to take into account the possible deviations during the drilling process.

Use of drilling	Drilling method	Bar diameter ø	c _{min}
aid			
No	Hammer or	< 25 mm	$30 \text{ mm} + 0.06 l_{\rm v} \ge 2\phi$
	diamond	\geq 25 mm	$40 \text{ mm} + 0.06 l_{\rm v} \ge 2\phi$
	Compressed air	< 25 mm	$50 \text{ mm} + 0.08 l_v$
		\geq 25 mm	$60 \text{ mm} + 0.08 l_{\rm v} \ge 2\phi$
Yes	Hammer or	< 25 mm	$30 \text{ mm} + 0.02 l_{\rm v} \ge 2\phi$
	diamond	\geq 25 mm	$40 \text{ mm} + 0.02 l_{\rm v} \ge 2\phi$
	Compressed air	< 25 mm	$50 \text{ mm} + 0.02 l_{y}$
		\geq 25 mm	$60 \text{ mm} + 0.02 l_v \ge 2\phi$
where l is the setting anchorage denth of rehars (in unit mm) 2°			

where l_v is the setting anchorage depth of rebars (in unit mm).

Content

- Challenges of PIR design 1.
- Recommendation 1: Strut-and-tie method for strut check 2.
- 3. Recommendation 2: Strut-and-tie method for tie force
- Recommendation 3: Option for bond stress 4.
- Recommendation 4: Minimum cover and edge distance 5.
- Design example 6.
- Reconciliation with BA theory 7.
- Conclusion 8.

Detail design example - A simply supported RC slab connected to an RC shear wall - 1/15

During the execution of construction, the RC slab is planned to be cast after the construction of the RC shear wall. No starter bar was pre-embedded; hence post-installed rebar is considered. The post-installed rebar for a new RC slab is to be designed.

Design example -3/15Structure dimension, material and load $l_{\rm n} = 4$ m, $h_{\rm slab} = 150$ mm, b = 1000 mm (for per metre run), Slab: cover = 30 mm, d = 120 mm, $a_{y} = d$ • Shear wall: $h_{\text{wall}} = 250 \text{ mm}$, cover = 50 mm, $\phi 25$ vertical and horizontal bar at 250 mm spacing C35 (cube), $f_{\rm ctk,0.05} \approx 1.95$ MPa **Concrete grade**: $f_{\rm vk} = 500 \text{ N/mm}^2, \gamma_{\rm s} = 1.15$ **Reinforcement**: **Permanent actions** / Dead loads (self-weight): $g_{\rm k} = 24.5 \text{ kN/m}^3 \text{ x } h = 24.5 \text{ x } 0.15 = 3.7 \text{ kN/m}^2$ Permanent actions / SDL (screeding, tiles, electrical, partition walls): $g_k = 2.7 \text{ kN/m}^2$ Variable actions / Live loads: $q_k = 5 \text{ kN/m}^2$ At ULS, $S_d = (1.35 \text{ g}_k + 1.50 \text{ } q_k) = 16.1 \text{ kN/m}^2$ Actions combination: 25 Design example -4/15

Structural analysis (design forces):

- At mid span, $M_{\rm Ed} = S_{\rm d} l_{\rm n}^2 / 8 = 32.2 \text{ kNm/m}$
- At support, $V_{\rm Ed} = S_{\rm d} l_{\rm n} / 2 = 32.2 \text{ kN/m}$

Predesigned slab

Bottom reinforcement required:

At mid span, $A_{s,rqd,m} = M_{Ed} / (0.9 d f_{yk} / \gamma_s) = 686 \text{ mm}^2/\text{m}$

Reinforcement provided:

At mid span, $\phi 10$, s = 100 mm; $A_{s,prov,m} = 785$ mm²/m

Design example - 6/15

Minimum post-installed reinforcement to be anchored at support

 $A_{\rm s,min}$ is generally = 0.13% $A_{\rm c}$ = 195 mm²/m

Тор	Bottom
Simplified rules Cl. 9.3.1.2(2) of EN 1992-1-1 (2004) (i.e., 15% of the maximum bending in the span) for simply supported slab to control cracking at negative moments due to partial fixity:	At the end support of simply- supported slab or continuous slab, half the calculated mid-span bottom reinforcement should be anchored:
$A_{s,simplified rules} = 0.15 M_{\text{Ed, mid-span}} / (0.9d f_{\text{yk}} / \gamma_{\text{s}}) = 103 \text{ mm}^2/\text{m}$ Provide $\phi 10@200 (393 \text{ mm}^2/\text{m})$	$A_{s,simplified rules} = 0.50 A_{s,mid-span} =$ 0.50 (686) = 343 mm ² /m Provide $\phi 10@200$ (393 mm ² /m)

Design example - 8/15

Recommendation 2: STM for tie force

Тор	Bottom
Shear (V_{Ed}) will not transfer tension to the top bar and end moment is zero due to simply supported assumption: $\sigma_{sd} = F_{Ed}/A_s = [V_{Ed} \pm M_{Ed}/z] / A_s$ = 0	Shear (V_{Ed}) will induce a direct tension via a strut of 45-degree to the bottom bar. The end moment is zero due to simply supported assumption: $\sigma_{sd} = F_{Ed}/A_s = [V_{Ed} \pm M_{Ed}/z] / A_s$ Hence, $F_{Ed,tens} = V_{Ed} + 0 = 32$ kN/m Post-installed steel area required: $A_{s,rqd} = F_{Ed} / (f_{yk} / \gamma_s) = 74$ mm ² /m

Design example -9/15

Recommendation 3: Option for bond stress

The top and bottom supports are in tension

- Option 1: f_{bu} as per EN 1992-1-1 (2004) cast-in rebar, hence α_2 as per EC2; $\alpha_2 = 0.85;$ $f_{bu} = 2.25 \ \eta_1 \ \eta_2 f_{ctk,0.05} / \gamma_m / \alpha_2 = 3.4 \text{ MPa}$
- Option 2: f_{bu} as per ETA or manufacturer's technical data, hence α_2' as per extended EC2 method for higher bond stress.

$$cd = 50 mm; \phi = 10 mm; \delta = 0.15;$$

$$\alpha_2' = \frac{1}{\frac{1}{0.7} + \delta \frac{c_d - 3\phi}{\phi}} \ge 0.25 = 0.4;$$

$$f_{\rm bu} = 2.25 \ \eta_1 \ \eta_2 f_{\rm ctk, 0.05} \ / \ \gamma_{\rm m} \ / \ \alpha_2 = 7.3 \ {\rm MPa}$$

31

Design example -10/15

Calculation of required anchorage length

Тор	Bottom
Back-calculate the equivalent hogging moment at support: $A_{s,req top support} / A_{s,bottom mid span} \times M_{Ed} =$ 195/686 x 32.2 = 9.2 kNm/m	From STM, the pull-out tension is equivalent to the shear force $F_{Ed,tens} = 32.2$ kN/m
Equivalent stress: $\sigma_{sd} = [9.2 / (0.9 d)] \times 1000 / (5 \pi 10^2/4)$ = 216 MPa	$\sigma_{sd} = 32200 / (5 \pi 10^2/4) = 82 \text{ MPa}$
<u>Option 1</u> $l_{b,rqd} = \frac{\sigma_{sd}}{f_{bd}} \frac{\phi}{4} = \frac{216}{3.4} (\frac{10}{4}) = 159 \text{ mm}$	$\frac{\text{Option 1}}{l_{b,rqd}} = \frac{\sigma_{sd}}{f_{bd}}\frac{\phi}{4} = \frac{82}{3.4}(\frac{10}{4}) = 60 \text{ mm}$
$\frac{\text{Option 2}}{l_{b,rqd}} = \frac{\sigma_{sd}}{f_{bd}} \frac{\phi}{4} = \frac{216}{7.3} \left(\frac{10}{4}\right) = 74 \text{ mm}$	$\frac{\text{Option 2}}{l_{b,rqd}} = \frac{\sigma_{sd}}{f_{bd}}\frac{\phi}{4} = \frac{82}{7.3}(\frac{10}{4}) = 28 \text{ mm}$ 32

Design example $- \frac{11}{15}$ Calculation of required anchorage length (with yield strength)

Тор	Bottom
If design with $f_y = 500$ MPa	If design with $f_y = 500$ MPa
$l_{b,rqd} = \frac{0.87 f_y}{f_{bd}} \frac{\phi}{4} = \frac{0.87(500)}{3.4} \frac{10}{4}$ = 320 mm	$l_{b,rqd} = \frac{0.87 f_y}{f_{bd}} \frac{\phi}{4} = \frac{0.87(500)}{3.4} \frac{10}{4}$ = 320 mm

Note that the anchorage length calculated using yield strength has already penetrated the RC walls thickness of 250 mm

33

Design example -12/15Calculation of minimum anchorage length

Тор	Bottom
$ \begin{array}{l} l_{b,min} \\ \geq \max\{0.3l_{b,req}; \ 10\phi; \alpha_{lb} \ 100 \ mm \end{array} \} \end{array} $	$l_{b,min} \geq \\ \max\{0.3l_{b,req}; 10\phi; \alpha_{lb} 100 mm\}$
$\frac{\text{Option 1}}{l_{b,min}} \ge \max\{0.3(159) = 48; 10(10) =$	$\frac{\text{Option 1}}{l_{b,min}} \ge \max\{0.3(60) = 18; \ 10(10) =$
	34

Design example – 13/15

Provide anchorage length

Тор	Bottom
$\frac{\text{Option 1}}{l_{b} = \max} \{l_{b,req}, l_{b,\min}\} = \max\{159, 150\} = 160 \text{ mm}$	$\frac{\text{Option 1}}{l_{b} = \max} \{l_{b,req}, l_{b,\min}\} = \max\{60, 150\} = 150 \text{ mm}$
$\begin{vmatrix} \underline{\text{Option } 2} \\ l_{\text{b}} = \max \{l_{\text{b,req}}, l_{\text{b,min}}\} = \max\{74, 150\} = \\ 150 \text{ mm} \end{vmatrix}$	$\frac{\text{Option 2}}{l_{b} = \max} \{l_{b,req}, l_{b,min}\} = \max\{28, 150\} = 150 \text{ mm}$

Design example -14/15

Recommendation 4: Minimum cover and edge distance

Тор	Bottom
$c_{\rm d} = \min \{s/2, c_1, c\} = \min \{100/2, 50, 50\} = 50 \text{ mm}$	$c_{\rm d} = \min \{ s/2, c_1, c \} = \min \{ 100/2, 50, 50 \}$ = 50 mm
Apply drilling aid, compressed air drilled, $\phi = 10$, hence $50 \text{ mm} + 0.02 l_v$	Apply drilling aid, compressed air drilled, ϕ = 10, hence 50 mm + 0.02 l_v
$\frac{\text{Option 1}}{50 + 0.02 \text{ (160)}} = 53 \text{ mm}$	$\frac{\text{Option 1 and 2}}{50 + 0.02 (150)} = 53 \text{ mm}$
$\frac{\text{Option } 2}{50 + 0.02} (150) = 53 \text{ mm}$	

Design example -15/15

Summary

Тор	Bottom
Hence provide: 5 T10 @ 100 mm, $A_{s,prov} = 393 \text{ mm}^2$	Hence provide: 5 T10 (a) 100 mm, $A_{s,prov} = 393 \text{ mm}^2$
$l_b = 160 \text{ mm (Option 1) or } l_b = 150 \text{ mm (Option 2)}$	$l_b = 150 \text{ mm} (\text{Option 1 and 2})$
$c_{\rm d} = 55$ mm.	$c_{\rm d} = 55 {\rm mm}.$

Since l_b extends more than the centreline of the support (250/2 = 125 mm), hence need NOT to check for additional moment induced by the eccentricity on the support.

37

Brief example: Decoupling of moment connection

- 1. Challenges of PIR design
- 2. Recommendation 1: Strut-and-tie method for strut check
- 3. Recommendation 2: Strut-and-tie method for tie force
- 4. Recommendation 3: Option for bond stress
- 5. Recommendation 4: Minimum cover and edge distance
- 6. Design example
- 7. Reconciliation with BA theory
- 8. Conclusion

Reconciliation with BA theory for the detail design example

Summary of design information:

- Base concrete: 250 mm thick wall, $c_d = 50$ mm, C35 cube strength
- PIR: bond strength $f_{bd} = 7.3$ MPa, use T10 @ 200 (5 bars per m run)
- Load: 32 kN/m / 5 = 6.4 kN per bar

Reconciliation with BA theory for:

Uncracked / cracked condition

See graphs on next slides

Acknowledgment: The computation work of BA theory was done by Ms. Eva Wong Shu Wen, graduate of Swinburne University (Sarawak)

- 1. Challenges of PIR design
- 2. Recommendation 1: Strut-and-tie method for strut check
- 3. Recommendation 2: Strut-and-tie method for tie force
- 4. Recommendation 3: Option for bond stress
- 5. Recommendation 4: Minimum cover and edge distance
- 6. Design example
- 7. Reconciliation with BA theory
- 8. Conclusion

Conclusion

- The challenges of PIR design were identified:
 - 1) Very long anchorage length
 - 2) Uncommon use of BA theory in PIR practice
- 4 recommendations were proposed, anchor upon:
 - 1) STM for strut check and tie force
 - 2) Options for bond strength
 - 3) Minimum cover and edge distance
- A design example was illustrated
- The BA theory was reconciled.

1-DAY SEMINAR ON

End of Presentation on

"PERFORMANCE EVALUATION FOR CONCRETE TO CONCRETE CONNECTION: FROM QUALIFICATION TO DESIGN"

Session 4: Design Recommendations: Strut-and-Tie Method and some reconciliations with rebar and anchor theory

Dr. Daniel Looi PhD (HKU) | BEng (Malaya)

Lecturer | Swinburne University of Technology (Sarawak Malaysia) dlooi@swinburne.edu.my